Generalization of the h-deformation to higher dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 286187
(http://iopscience.iop.org/0305-4470/28/21/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:47

Please note that terms and conditions apply.

Generalization of the h-deformation to higher dimensions

M Alishahiha
Institute for Studies in Theoretical Physics and Mathematics, PO Box 19395-5746 Tehran, Iran \dagger and Department of Physics, Sharif University of Technology, PO Box 11365-9161, Tehran, Iran \ddagger

Received 15 March 1995, in final form 7 June 1995

Abstract

In this article we construct $G L_{h}$ (3) from $G L_{q}$ (3) by a singular map. We show that there exist two singular maps which map $G L_{q}(3)$ to new quantum groups. We also construct their R-matrices and will show that, although the maps are singular, their R-matrices are not. Then we generalize these singular maps to the case $G L(N)$ and for C_{n} series.

There exist two types of $S L(2)$ quantum groups. One is the standard $S L_{q}(2)$, the other is the Jordanian quantum group which is also called the h-deformation of $S L(2)$. Quantum matrices in two dimensions, admitting left and right quantum spaces, are classified [1]. One matrix is the q-deformation of $G L(2)$, the other is the h-deformation. The q-deformation of $G L(N)$ has been studied extensively, but in the literature only the two-dimensional case of h-deformation has been studied [2-7].

In [8] it has been shown that $G L_{h}(2)$ can be obtained from $G L_{q}(2)$ by a singular limit of a similarity transformation. We will show this method can be used successfully, for construction of $G L_{h}(N)$. In other words, at first we consider the $G L(3)$ and introduce several singular maps which convert $G L_{q}(3)$ to $G L_{h}(3)$. Then we generalize one of the singular maps to the N-dimensional case. We use the R-matrix of $G L_{q}(N)$ which, by this map, results in a new R-matrix. By this map one can also obtain the h-deformation of the C_{n} series, but not the B_{n} and D_{n} series.

In this article we denote q-deformed objects by primed quantities. Unprimed quantities represent transformed objects.

Consider Manin's q-plane with the following quadratic relation between coordinates:

$$
\begin{equation*}
x^{\prime} y^{\prime}=q y^{\prime} x^{\prime} \tag{1}
\end{equation*}
$$

Under the following linear transformation:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & \frac{h}{q-1} \tag{2}\\
0 & 1
\end{array}\right)\binom{x}{y}
$$

relation (1) changes to $x y-q y x=h y^{2}$. For the case of $q=1$, one obtains the relation for the two-dimensional h-plane. In fact g itself is singular in the $q=1$ case, but the resulting relation for the plane is non-singular.

[^0]The above linear transformation on the plane induces the following similarity transformation on the R-matrix of $G L_{q}(2)$:

$$
\begin{equation*}
R_{h}=\lim _{q \rightarrow 1}(g \otimes g)^{-1} R_{q}(g \otimes g) \tag{3}
\end{equation*}
$$

Although the above map is singular, the resulting R-matrix is non-singular and is the well known R-matrix of $G L_{h}(2)$.

Now consider the three-dimensional Manin's quantum space

$$
\begin{equation*}
x_{i}^{\prime} x_{j}^{\prime}=q x_{j}^{\prime} x_{i}^{\prime} \quad i<j \tag{4}
\end{equation*}
$$

and consider the following linear transformation:

$$
\begin{equation*}
X=g^{-1} X^{\prime} \tag{5}
\end{equation*}
$$

where

$$
g=\left(\begin{array}{ccc}
\lambda_{1} & \alpha & \beta \tag{6}\\
0 & \lambda_{2} & \gamma \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

Here α, β and γ are parameters which can be singular at $q=1$, so they can be written as $1 / f(q)$ where $f(1)=0$. The Taylor expansion of $f(q)$ about $q=1$ is $f(q)=(1 / h)(q-1)+O\left((q-1)^{2}\right)$. We need only the first term, because we are only interested in the behaviour of $f(q)$ in the neighbourhood of $q=1$. The coefficient of the first term in the Taylor expansion, h, plays the role of the deformation parameter for the new quantum group. The $\lambda_{i} \mathrm{~s}$ can be made equal to 1 by rescaling.

To obtain α, β and γ we should apply this map to the q-deformed plane and its dual, and require that the mapped plane and its dual be non-singular at $q=1$. The following are the only singular maps satisfying this condition:
$g_{1}=\left(\begin{array}{ccc}1 & \frac{h}{q-1} & \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad g_{2}=\left(\begin{array}{ccc}1 & \alpha & \beta \\ 0 & 1 & \frac{h}{q-1} \\ 0 & 0 & 1\end{array}\right) \quad g_{3}=\left(\begin{array}{ccc}1 & \alpha & \frac{h}{q-1} \\ 0 & 1 & \gamma \\ 0 & 0 & 1\end{array}\right)$.
Here α, β and γ (in g_{1}, g_{2}, g_{3}), are non-singular parameters. Note that the R-matrices obtained from these maps solve the quantum Yang-Baxter equation and are non-singular for $q=1$.

Let us denote the dependence of g_{1}, g_{2} and g_{3} on parameters explicitly;

$$
\begin{equation*}
g_{1}:=g_{1}\left(\frac{h}{(q-1)}, \alpha\right) \quad g_{2}:=g_{2}\left(\frac{h}{(q-1)}, \alpha, \beta\right) \quad g_{3}:=g_{3}\left(\frac{h}{(q-1)}, \alpha, \gamma\right) . \tag{8}
\end{equation*}
$$

It is easy to show that

$$
\begin{align*}
& g_{1}\left(\frac{h}{(q-1)}, \alpha\right) g_{1}(0,-\alpha)=g_{1}\left(\frac{h}{(q-1)}, 0\right) \\
& g_{2}\left(\frac{h}{(q-1)}, \alpha, \beta\right) g_{2}(0,-\alpha,-\beta)=g_{2}\left(\frac{h}{(q-1)}, 0,0\right) \\
& g_{3}\left(\frac{h}{(q-1)}, \alpha, \gamma\right) g_{3}(\alpha \gamma,-\alpha,-\gamma)=g_{3}\left(\frac{h}{(q-1)}, 0,0\right) \tag{9}
\end{align*}
$$

so all non-singular parameters in the above matrices can be set to zero. Moreover, the R-matrices $R\left(g_{1}\right)$ and $R\left(g_{2}\right)$ which are obtained by formula (3) using $g_{1}(h /(q-1), 0)$ and $g_{2}(h /(q-1), 0,0)$, respectively, are equivalent, because

$$
\begin{equation*}
(s \otimes s)^{-1} R\left(g_{2}\right)(s \otimes s)=R\left(g_{1}\right) \tag{10}
\end{equation*}
$$

where $s=e_{13}+e_{21}+e_{32}$. Therefore, there are only two independent cases. The R-matrices corresponding to these transformations are non-singular and have been first obtained by Hietarinta [9]. The first case (the trivial case) is $\alpha=0$ in g_{1} (or $\alpha=\beta=0$ in g_{2}) and the second case is $\alpha=\gamma=0$ in g_{3}. The h-deformed quantum plane and its dual and R-matrices corresponding to these cases are:
(i) First case.

$$
\begin{array}{ll}
{\left[x_{1}, x_{2}\right]=h x_{2}^{2}} & \eta_{3}^{2}=\eta_{2}^{2}=\left\{\eta_{1}, \eta_{2}\right\}=0 \\
{\left[x_{1}, x_{3}\right]=0} & \left\{\eta_{2}, \eta_{3}\right\}=\left\{\eta_{1}, \eta_{3}\right\}=0 \tag{11}\\
{\left[x_{2}, x_{3}\right]=0} & \eta_{1}^{2}=-h \eta_{2} \eta_{1}
\end{array}
$$

and the non-zero elements of the R-matrix except for $R_{i j i j}=1$ are

$$
\begin{align*}
& R_{1121}=R_{2122}=-R_{1112}=-R_{1222}=h \\
& R_{1122}=h^{2} \tag{12}
\end{align*}
$$

(ii) Second case.

$$
\begin{array}{lc}
{\left[x_{1}, x_{2}\right]=2 h x_{3} x_{2}} & \left\{\eta_{1}, \eta_{2}\right\}=-2 h \eta_{3} \eta_{2} \\
{\left[x_{1}, x_{3}\right]=h x_{3}^{2}} & \eta_{1}^{2}=-h \eta_{3} \eta_{1} \tag{13}\\
{\left[x_{2}, x_{3}\right]=0} & \eta_{3}^{2}=\eta_{2}^{2}=\left\{\eta_{1}, \eta_{3}\right\}=\left\{\eta_{2}, \eta_{3}\right\}=0
\end{array}
$$

and the non-zero elements of R-matrix except for $R_{i j i j}=1$ are

$$
\begin{array}{lc}
R_{1113}=R_{1333}=-h & R_{1131}=R_{3133}=h \\
R_{2132}=-R_{1223}=2 h & R_{1133}=h^{2} \tag{14}
\end{array}
$$

A linear transformation on the plane induces a similarity transformation on the quantum matrices acting upon it:

$$
\begin{equation*}
M^{\prime}=g M g^{-1} \tag{15}
\end{equation*}
$$

The algebra of functions, $G L_{q}(3)$, is obtained from the following relations:

$$
\begin{equation*}
R^{\prime} M_{1}^{\prime} M_{2}^{\prime}=M_{2}^{\prime} M_{1}^{\prime} R^{\prime} \tag{16}
\end{equation*}
$$

Applying transformation (15) one easily obtains, for the case of $q=1$,

$$
\begin{equation*}
R M_{1} M_{2}=M_{2} M_{1} R \tag{17}
\end{equation*}
$$

So the entries of the transformed quantum matrix M fulfil the commutation relations of the $G L_{h}(3)$, for both $g \mathrm{~s}$. It is easy to show that the h-deformed determinant is central, so it can be set to one. A quantum group's differential structure is completely determined by an R-matrix [10]. One therefore expects that by these similarity transformations the differential structure of the h-deformation be obtained from that of the q-deformation

$$
\begin{align*}
& M_{2} \mathrm{~d} M_{1}-R_{12} \mathrm{~d} M_{1} M_{2} R_{21}=0 \\
& \mathrm{~d} M_{2} \mathrm{~d} M_{1}+R_{12} \mathrm{~d} M_{1} \mathrm{~d} M_{2} R_{21}=0 \tag{18}
\end{align*}
$$

Now, it is obvious that defining $\mathrm{d} M:=g^{-1} \mathrm{~d} M g$ and using the above relations the differential of $G L_{h}(3)$ can be easily obtained from the corresponding differential structure of $G L_{q}(3)$.

For the higher dimensions, there are several generalizations which depend on the position of singularity in g. For example we consider the following generalization:

$$
\begin{equation*}
g=\sum_{i=1}^{N} e_{i i}+\frac{h}{q-1} e_{1 N} . \tag{19}
\end{equation*}
$$

The general aspect of the contraction for arbitrary N can be obtained from this simple map. By inserting this map in (3) we will obtain the general form of the h-deformed R-matrix, which solves the quantum Yang-Baxter equation.
(i) The series A_{n-1}. After applying this singular map, the corresponding h-deformed R-matrix will become

$$
\begin{gather*}
R_{h}=\sum_{i, j=1}^{N} e_{i i} \otimes e_{j j}+2 h \sum_{i>1}^{N-1}\left(e_{1 t} \otimes e_{i N}-e_{i N} \otimes e_{1 i}\right)-h\left(e_{1 N} \otimes e_{N N}-e_{N N} \otimes e_{1 N}\right) \\
-h\left(e_{11} \otimes e_{1 N}-e_{1 N} \otimes e_{11}\right)+h^{2}\left(e_{\mathrm{IN}} \otimes e_{1 N}\right) . \tag{20}
\end{gather*}
$$

Consider N-dimensional q-deformed quantum space

$$
\begin{equation*}
x_{i}^{\prime} x_{j}^{\prime}=q x_{j}^{\prime} x_{i}^{\prime} \quad i<{ }^{\prime} j \tag{21}
\end{equation*}
$$

Assume the following linear singular transformation

$$
\begin{equation*}
x_{i}^{\prime}=g_{i j} x_{j} \tag{22}
\end{equation*}
$$

By the above transformation and in the $q=1$ case we obtain the h-deformed quantum plane as follows:

$$
\begin{array}{ll}
x_{i} x_{j}=x_{j}=x_{j} x_{i} & 1<i<j \leqslant N \\
{\left[x_{1}, x_{j}\right]=2 h x_{N} x_{j}} & -\left[x_{1}, x_{N}\right]=h\left(x_{N}\right)^{2} . \tag{23}
\end{array}
$$

(ii) The series B_{n}, C_{n} and D_{n}. The corresponding q-deformed R-matrix has order $N^{2} \times N^{2}$, where $N=2 n+1$ for B_{n} and $N=2 n$ for D_{n} and C_{n} and it is given by [11]:

$$
\begin{gather*}
R_{q}=q \sum_{i \neq i^{\prime}}^{N} e_{i i} \otimes e_{i i}+e_{\frac{1}{2}(N+1) \frac{1}{2}(N+1)} \otimes e_{\frac{1}{2}(N+1) \frac{1}{2}(N+1)}+\sum_{i \neq j, j^{\prime}}^{N} e_{i i} \otimes e_{j j}+q^{-1} \sum_{i \neq i^{\prime}}^{N} e_{i^{\prime} i^{\prime}} \otimes e_{i i} \\
+\left(q-q^{-1}\right) \sum_{i>j}^{N} e_{i j} \otimes e_{j i}-\left(q-q^{-1}\right) \sum_{i>j}^{N} q^{\rho_{i}-\rho_{j}} \epsilon_{i} \epsilon_{j} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \tag{24}
\end{gather*}
$$

The second term is present only for the series B_{n}. Here $i^{\prime}=N+1-i, j^{\prime}=N+1-j$, $\epsilon_{i}=1, i=1, \ldots, N$ for the series B_{n} and $D_{n}, \epsilon_{i}=1, i=1, \ldots,(N / 2), \epsilon_{i}=-1$, $i=(N / 2)+1, \ldots, N$ for the series C_{n} and $\left(\rho_{1}, \ldots, \rho_{N}\right)$ is

$$
\begin{array}{ll}
\left(\left(n-\frac{1}{2}\right), \ldots, \frac{1}{2}, 0,-\frac{1}{2}, \ldots,-n+\frac{1}{2}\right) & \text { for } B_{n} \\
(n, n-1, \ldots, 1,-1, \ldots,-n) & \text { for } C_{n} \tag{25}\\
(n-1, \ldots, 1,0,0,-1, \ldots,-n+1) & \text { for } D_{n}
\end{array}
$$

By inserting this R-matrix in (3), the coefficient of $e_{1 N} \otimes e_{1 N}$ becomes

$$
\begin{equation*}
\frac{h^{2}}{q-1}\left(q^{-1}+1\right)\left(1+\epsilon_{N} q^{\rho_{N}-\rho_{1}}\right) \tag{26}
\end{equation*}
$$

This expression is non-singular only when $\epsilon_{N}=-1$ and for $q=1$ it is equal to $2 N h^{2}$. We thus see that only the C_{n} series remains non-singular. The corresponding h-deformed R-matrix is

$$
\begin{align*}
& R_{h}=\sum_{i, j=1}^{N} e_{i i} \otimes e_{j j}+2 N h^{2} e_{1 N} \otimes e_{1 N}-2 h \sum_{i=1}^{N} e_{1 i} \otimes e_{i N}+\epsilon_{i} e_{i N} \otimes e_{i^{\prime} N} \\
&+2 h \sum_{i=1}^{N-1} e_{i N} \otimes e_{1 i}-\epsilon_{i} e_{1 i} \otimes e_{1 i^{\prime}} . \tag{27}
\end{align*}
$$

Therefore by this method we can obtain $S P_{h}(2 n)$. The algebra $S P_{q}^{2 n}(c)$ with generators $x_{1}^{\prime}, \ldots, x_{2 n}^{\prime}$ and relations

$$
\begin{equation*}
R_{q}^{\prime}\left(x^{\prime} \otimes x^{\prime}\right)=q x^{\prime} \otimes x^{\prime} \tag{28}
\end{equation*}
$$

is called the algebra of functions on quantum $2 n$-dimensional symplectic space. After applying the singular transformation (19) to (28) we obtain the relations between the generators of $S P_{h}^{2 n}(c)$:

$$
\begin{align*}
& x_{i} x_{j}=x_{j} x_{i} \quad 1<i<j \leqslant N \quad j \neq j^{\prime} \tag{29}\\
& x_{1} x_{j}=x_{j} x_{1}+2 h x_{N} x_{j} \quad j \neq N \\
& x_{i^{\prime}} x_{i}=x_{i} x_{i^{\prime}}+2 h \epsilon_{i^{\prime}} x_{N}^{2} \quad 1<i<i^{\prime} \leqslant N . \tag{30}
\end{align*}
$$

In $S P_{q}^{2 n}$ the equality $x^{\prime t} C^{\prime} x^{\prime}=0$ holds. By applying the singular map (29), C^{\prime} transforms to $C=g^{t} C^{\prime} g$, where C is given by

$$
\begin{equation*}
C=\sum_{i=1}^{N} \epsilon_{i} e_{i i^{\prime}}-N h e_{N N} \tag{31}
\end{equation*}
$$

The quantum group $S P_{q}(2 n)$ acts on $S P_{q}^{2 n}(c)$ and preserves $x^{t t} C^{\prime} x^{\prime}=0$, so we have

$$
\begin{equation*}
M^{\prime t} C^{\prime} M^{\prime}=C^{\prime} \tag{32}
\end{equation*}
$$

and on the other hand

$$
\begin{equation*}
M=g M^{\prime} g^{-1} \quad M^{t}=\left(g^{-1}\right)^{t} M^{t} g^{t} \tag{33}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
M^{t} C M=C . \tag{34}
\end{equation*}
$$

So we conclude that the quantum group $S P_{h}(2 n)$ acts on $S P_{h}^{2 n}(c)$ and preserves $x^{t} C x=0$. It is interesting to note that the expression $x^{t t} C^{\prime} x^{\prime}$, which should be equal to one for $S O(2 n)$ and $S O(2 n+1)\left(B_{n}\right.$ and D_{n} series), is singular. Therefore we cannot obtain the h-deformation of the B_{n} and D_{n} series by contraction of the q-deformation, at least by this form (upper triangular matrix) of singular transformation (g).

One of the interesting problems is to construct $U_{h}(g l(3))$ and its generalization to higher dimensions.

Acknowledgments

I would like to thank A Aghamohammadi for drawing my attention to this problem and V Karimipour, A Shariati and M Khorami for valuable discussions. I would also like to thank the referee for his (her) useful comments, especially for the discussion on classifying the non-equivalent singular transformations.

References

[1] Ewen H, Ogievetsky O and Wess J 1991 Lett. Math. Phys. 22297

- [2] Domidov E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Prog. Theor. Phys. Suppl. 102203
[3] Zakrzewki S 1991 Lett. Math. Phys. 22287
[4] Ohn Ch 1992 Lett. Math. Phys. 25891
[5] Karimipour V 1994 Lett. Math. Phys. 3087
[6] Kupershmidt B A 1992 J. Phys. A: Math. Gen. 25 L123
[7] Aghamohammadi A 1993 Mod. Phys. Lett. A 82607
[8] Aghamohammadi A, Khorrami M and Shariati A 1995 J. Phys. A: Math. Gen. 28 L225
[9] Hietarinta J 1993 J. Phys. A: Math. Gen. 267077
[10] Sudbery A 1992 Phys. Lett. 284B 61
[11] Reshetikhin N Yu, Takhtadzhyan L A and Faddeev L D 1990 Leningrad Math J. 1193

[^0]: \dagger E-mail address: alishaḥ@netware2.ipm.ac.ir
 \ddagger E-mail address: alishah@irearn.bitnet

